

European Academy for Industrial Management (AIM)

Advances in Industrial cyber-physical systems

THE HUMAN ROLE IN CYBER-PHYSICAL SYSTEMS Chair of Production Systems

Prof. Dr.-Ing. Horst Meier

Agenda

THE HUMAN ROLE IN CYBER-PHYSICAL SYSTEMS

- 1. Industry 4.0
- 2. APPsist Project
- 3. Learning Factory
- 4. Conclusion

The 4th Industrial Revolution

End of 18th cent.

Start of 20th cent. Start of 70s of 20th cent.

Today

Time

Kagermann et al. (2013), S.17

irst mechanical

weaving loom 1784

Definitions

Industry 4.0

Crosslinking of cyber-physical systems (CPS) and integration into production and logistics (KAGERMANN et al. 2013).

cyber-physical systems (CPS) – Industry 4.0

Crosslinking of the physical world (actuators, sensors, etc.) and the cyber world (net-based services, that interpret data and trigger processes in physical world) (Geisberger & Broy 2012).

cyber-physical production systems (CPPS)

Decomposition of the automation pyramid to decentralized systems, where information is available everywhere and any time (VDI/VDE 2013).

Smart Factory

Crosslinking of machines and equipment as well as intelligent products, which can be clearly identified and located and which will "find their way through the production" (KAGERMANN et al. 2013).

Smart Factory and intelligent infrastructure

Industry 4.0 – "Internet of Evertything"

Automation Pyramid

Own representation based on (VDI/VDE, 2013) (Günther & Ten Hompel, 2010)

Physical and cyber level of CPPS

Industry 4.0 = CIM 2.0?

Main idea:

- •holistic consideration of a company's value creation processes and support by integrated ITsystems
- continuous computer-aided information processing, based on an interdepartmental data base (CAD/CAM; flexible manufacturing systems).

Goal: unmanned factory

Human Role: planning and monitoring

"The perspective of a completely automated and unmanned factory cannot represent a realistic perspective because of technological and economical reasons."

[Prof. Dr. Hirsch-Kreinsen]

New enablers: Internet technology, data collection storage and processing

Technical innovations shall not be considered isolated. A more integrated view of technical, organizational and personal aspects has to be considered as a socio technical system.

The human role within the production is still very important!

Industry 4.0 research projects at the LPS

Digital Media in Professional Education

- Development of semi-automated learning
- scenarios, that allownew forms of learning at the workplace in real-time, operations like
- Sustainable competence development for staff by "Learning on the job" and "Learning

employee on of information according to

nearsthe job or the production planner

RUB IGM

GROB

ORWERK

Research Project APPSIST

INTELLIGENT KNOWLEDGE SERVICES FOR THE SMART PRODUCTION

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages Betreut von:

Bestandteil des Zukunftsprojektes:

project consortium

* subcontracted partners

Motivation

Increasing complexity of plants, as a result of the use of flexible automation-systems within the production by using cyber-physical systems

The ability to manage these activities by staff does not increase simultaneously

Accruement of competence deficits, which are to be balanced by an appropriate assistance-system!

Competence deficits

Goals of the project

Concept of Assistance

Technical dimensions

Success dimensions

How to bring Industry 4.0 into learning factories?

How to bring Industry 4.0 into learning factories?

Questions:

- What is supposed to be the content?
 - general overview of Industry 4.0
 - benefit and challenges of Industry 4.0
 - Examples of Industry 4.0

- participants develop a understanding of what Industry 4.0 stand for
- participants learn how to implement Industry 4.0 in factories
- participants know the advantages but also risks (co determination, personal rights) of Industry 4.0
- How to implement a training environment?
 - consideration of particular workplaces (local) and production system (global); how they
 operate without and with Industry 4.0 "standards"
 - presentation of a fully functional and implemented Industry 4.0 production (pilot factory)
- What kind of product is needed?
 - networked product

How to bring Industry 4.0 into learning factories?

Approach:

- impact on target figures of the production: time, cost, quality
- impact on the production system: technology, origination, personnel

definition of requirements:

- technology: machines (CPS), PPC, data, I&C, ...
- organization: operational and organizational structure, flow of information, ...
- personnel: duties/tasks, qualifications, development of competences, ...
- product: networked components

development of 2 scenarios:

- focus on technology implementation: necessary installation of I&C-components
- focus on human assistance: possibilities, advantages, risks, changes for employees

implementation:

- technical conversion of our pilot factory
- pilot phase

Conclusion

- Industry 4.0 is a complex undertaking
- Challenges regarding technical and organizational aspects
- The human role is a key factor in the implementation
- Intelligent support systems are needed to plan, control and operate smart factories
- Learning factories have to adapt to Industry 4.0

5th conference on learning factories

TOPICS

- Lean production
- Industry 4.0 / Cyber-physical systems
- Resource efficiency
- Productivity management
- Digital learning environment
- Problem-based learning
- Consideration of the product lifecycle
- Industrial implementation

JULY 7TH 2014 (START: EARLY AFTERNOON)

- Greeting and introduction
- Workshops in the LPS Learning Factory
- Welcome reception

JULY 8TH 2014 (FULL DAY)

- Keynote
- Conference session

VENUE: Ruhr University Bochum

Important Dates

2014

November 3rd Abstract submission

November 10th Notification of abstract acceptance

2015

January 12th Full paper submission

January 30th Notification of paper acceptance

February 17th Camera-ready paper submission

February 28th Registration deadline authors

June 30th Registration deadline participants

July 7th - 8th Conference on Learning Factories

sponsored by CIRP

www.rub.de/clf-2015

Thank you for your attention!