Basics of Design Structure Matrices

Eindhoven University of Technology Department of Mechanical Engineering Systems Engineering

L.F.P. Etman, J. (Koos) E. Rooda AIM2015 Vienna

September 16, 2015

Contents

- The design structure matrix DSM
- Clustering a DSM
- Building a DSM
- The design matrix DM
- Conversion of a DM to a DSM
- The multi-domain-matrix MDM
- The life-cycle matrix LCM

The design structure matrix DSM

	a	b	С	d	e
а	-		Х		Х
b		-		Χ	
С	x		-		Х
d		X		-	
е	x		Х		-

	q	r	S	t	и
q	-	Х			
r		-			
S		X	-		Χ
t				-	Χ
и	X		Χ		-

- A DSM is an N × N matrix with identical row and column labels.
- A mark (x) at position (i,j) indicates: element i depends on element j.
- Directed and undirected DSMs may be distinguished.
- Different types and strengths of dependencies may be indicated.

Clustering a DSM

	a	b	С	d	e
а	-		Х		X
a b		-		Х	
c d	X		-		Χ
d		Х		-	
e	×		Χ		-

By permuting the rows and columns of the DSM, using a clustering algorithm, the underlying structure can be revealed.

ntents DSM Clustering Building DSM DM DM2DSM MDM LCN

Building a DSM

Questions:

- Which row and column elements should be used, e.g. components, activities, subsystems, people, etc.
- What type of dependencies should be modeled, e.g. spatial, energy, information, etc.

Methods to build a DSM:

- Directly from:
 - technical drawings,
 - · technical documentation, and
 - expert interviews.
- Indirectly from a design matrix DM by:
 - 1. documents that specify the mapping, of e.g. functions to components, in a DM, and
 - use the DM, to calculate the function DSM and the component DSM.

The design matrix DM

	k	1	m	n
a		Χ		Х
b	Х		Х	
С		Χ	Χ	

- A design matrix is a M × N matrix that maps M elements of one domain to N elements of another domain, e.g. rows represent components and columns represent functions.
- Function I is fulfilled by components a and c.

DM to DSM conversion

	k	I	m	n		k	_	m	n		1	а	Ь	с
		X		X	· k	-		Χ		a		-		
b	x		Х		I		-	Х	Χ	b	,		_	×
С	^	X			m	Х	Χ	-			- 1	x	X	_
C		^	^		n		X		-			^	^	

- If two functions share a common component, then they are dependent, e.g. I and n share component a.
- If two components contribute to the same function, then they are dependent, e.g. a and c both contribute to I.

The multi-domain matrix MDM

M x M DSM	
N x M	N x N
DM	DSM

	k	1	m	n	a	b	С
k	-		Х				
1		-	х	Χ			
m	X	X	-				
n		Χ		-			
а		Χ		Χ	-		Χ
b	x		Х			-	Х
<i>C</i>		Х	Χ		X	Х	-

- Multiple DSMs and DMs are combined in one matrix.
- Matrices on the diagonal are single domain DSMs, e.g. function DSMs; component DSMs.
- Off-diagonal matrices are DMs mapping the dependencies between two domains, e.g. function-component DM.

LCM

The life cycle matrix LCM

An LCM is an MDM:

X == Y : DSM(X,X),X /= Y : DM(X,Y),

where X, Y:

Needs.

Functional,

- Conceptual,

Embodiment.

Detailed,

Manufacturing,

Physical,

Operational,

Revision,

Annihilation.