Basics of Design Structure Matrices

Eindhoven University of Technology
Department of Mechanical Engineering
Systems Engineering
L.F.P. Etman, J. (Koos) E. Rooda AIM2015 Vienna

September 16, 2015

Contents

- The design structure matrix DSM
- Clustering a DSM
- Building a DSM
- The design matrix DM
- Conversion of a DM to a DSM
- The multi-domain-matrix MDM
- The life-cycle matrix LCM

The design structure matrix DSM

	a	b	c	d	e
a	-		x		x
b		-		x	
c	\times		-		\times
d		x		-	
e	\times		x		-

	q	r	s	t	u
q	-	\times			
r		-			
s		\times	-		\times
t				-	\times
u	\times		\times		-

- A DSM is an $N \times N$ matrix with identical row and column labels.
- A mark (x) at position (i, j) indicates: element i depends on element j.
- Directed and undirected DSMs may be distinguished.
- Different types and strengths of dependencies may be indicated.

Clustering a DSM

By permuting the rows and columns of the DSM, using a clustering algorithm, the underlying structure can be revealed.

Building a DSM

Questions:

- Which row and column elements should be used, e.g. components, activities, subsystems, people, etc.
- What type of dependencies should be modeled, e.g. spatial, energy, information, etc.

Methods to build a DSM:

- Directly from:
- technical drawings,
- technical documentation, and
- expert interviews.
- Indirectly from a design matrix DM by:

1. documents that specify the mapping, of e.g. functions to components, in a DM, and
2. use the DM, to calculate the function DSM and the component DSM.

The design matrix DM

	k	l	m	n
a		\times		\times
b	\times		\times	
c		\times	\times	

- A design matrix is a $M \times N$ matrix that maps M elements of one domain to N elements of another domain, e.g. rows represent components and columns represent functions.
- Function / is fulfilled by components a and c.

DM to DSM conversion

- If two functions share a common component, then they are dependent, e.g. I and n share component a.
- If two components contribute to the same function, then they are dependent, e.g. a and c both contribute to l.

The multi-domain matrix MDM

- Multiple DSMs and DMs are combined in one matrix.
- Matrices on the diagonal are single domain DSMs, e.g. function DSMs; component DSMs.
- Off-diagonal matrices are DMs mapping the dependencies between two domains, e.g. function-component DM.

The life cycle matrix LCM

An LCM is an MDM:

$$
\begin{array}{ll}
X==Y & : \operatorname{DSM}(X, X), \\
X /=Y & : D M(X, Y),
\end{array}
$$

where X, Y :
N - Needs,
F - Functional,
C - Conceptual,
E - Embodiment,
D - Detailed,
M - Manufacturing,
P - Physical,
O - Operational,
R - Revision,
A - Annihilation.

